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Abstract

In this paper we present and analyze different volume-of-fluid (VOF) reconstruction and advection algorithms that
approximate the interface separating two immiscible fluids in the three-dimensional space. The paper describes the
improvement of the reconstruction when a least-square fit algorithm, which minimizes a distance functional, is applied.
Its performance is tested for several smooth surfaces against other simple reconstruction methods. Then Eulerian,
Lagrangian and mixed split advection schemes are presented and analyzed. In particular, one advection method is dis-
cussed that conserves mass exactly for a divergence-free velocity field, thus allowing computations to machine precision.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In fluid mechanics, many techniques have been used to track the evolution of a curve or surface. These
methods have been successfully applied to industrial and natural flows such as sea waves, jet atomization,
splashes, droplet/bubble oscillations and their breakup and coalescence. Among the most popular tracking
methods there are the surface-marker method, the level-set method, the volume-of-fluid (VOF) method. All
these methods can be combined in mixed algorithms with drawbacks and advantages [1–5].

This paper is about the design of a practical, accurate, three-dimensional, standalone VOF scheme. The
main focus will be to improve the algorithms for the computation of the normal in the reconstruction step
and for the conservation of mass in the advection step which, so far, remain open problems.

Some effort has been devoted to investigate the consistency and volume conservation of the split method in
three dimensions. The VOF method has a unique advantage which is its potential to conserve volume. Limits
to this potential come from the numerical methods in use and, in practice, it is very hard to find a VOF method
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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that satisfies this property exactly. In [6] the authors have suggested a method in two dimensions which is both
consistent and conserves volume exactly. This method is here extended and tested in three dimensions.

In the VOF method, a color or volume fraction quantity C is initialized in each cell to the fraction of the
volume of the cell filled with a reference phase. It is based on the characteristic function v that has the value 1
in the reference phase and 0 in the other phase or vacuum. If the two fluids are immiscible each elementary
fluid parcel does not change its phase in time, therefore the function v is passively advected by the flow
and satisfies
Dv
Dt
� ov

ot
þ ðv � rÞv ¼ 0: ð1Þ
Most popular VOF methods solve the advection equation with a split technique. In a two-dimensional split
method, the fluxes along one coordinate direction are first computed and the C data are updated to an inter-
mediate level. The interface is then reconstructed and the fluxes along the other direction are calculated to
update the volume fraction field to the next discrete time level. Errors to the exact conservation of mass
may come from the fact that adding the fluxes leads to inconsistencies in the C field. In fact, as we update
the C data in some locations the consistency property ð0 6 C 6 1Þ of the volume fraction may not be verified.
Another form of inconsistency may occur when C < 1 in the middle of a region where C = 1 everywhere at the
previous time step. On the other hand in the past few years a lot of effort has been devoted to improve the
VOF method by making it unsplit [7–9].

The other topic discussed in this work is the searching of schemes that make the computation of the
interface normal easier and more accurate. In VOF/PLIC (piecewise linear interface calculation) methods
the interface is approximated by a portion of a plane in each cut cell [10,11,7,12]. The ELVIRA method
[13] is second-order accurate, but rather expensive in three-dimensions [14]. In this paper we discuss two sim-
ple geometrical criteria to select a preliminary reconstruction among a set of candidates. Points on this recon-
structed interface are then used to minimize a distance functional that yields a new planar interface in each cut
cell. This new reconstruction algorithm is second-order accurate when applied iteratively, and it is not com-
putationally very expensive.

We begin in Section 2 with the description of reconstruction algorithms and their performance with grid
refinement by considering the reconstruction of several smooth surfaces, such as planes, spheres and a sinu-
soidal surface. In Section 3 we quickly review split advection schemes in one and two dimensions and then
discuss the new three-dimensional split algorithm. We first study its performance with velocity fields that
do not deform the initial shape of the fluid body, such as solid body translations and rotations, and then with
a divergence-free flow that stretches considerably the fluid object. Finally we present our conclusions.
2. Interface reconstruction algorithms

We consider a three-dimensional computational domain with cubic cells of side h. The volume fraction C
represents the discrete version of the function v
CijkðtÞ ¼
1

V 0

Z
V 0

vðx; tÞdx; ð2Þ
where V 0 ¼ h3 is the volume of the computational grid cell ði; j; kÞ. In VOF/PLIC methods the interface is rep-
resented in each cut cell by a portion of a plane, perpendicular to the local gradient $C of the volume fraction
C, defined by the equation
m � x ¼ mxxþ myy þ mzz ¼ a: ð3Þ

The problem is to determine the constants ðmx;my ;mz; aÞ so that the cut volume V under the plane (3) in the
cell ði; j; kÞ is equal to h3C. The numerical methods to calculate the normal vector are usually based on finite
difference approximations of the volume fraction gradient $C and may satisfy some other minimizing criteria.
In this paper we discuss different algorithms to approximate an interface in the central cell of a 3� 3� 3 block
of cells by using their volume fraction values. Once the normal vector m and the cut volume h3C are known,
then the value of a is computed by enforcing volume conservation. Geometrically this constraint is applied by
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moving the interface plane (3) along the normal direction, changing in this way the free parameter a, until the
volume under the plane is equal to h3C. In Section 2.1 we present an expression for the cut volume, area and its
center of mass as a function of a and in Section 2.2 we discuss a few algorithms for the evaluation of the nor-
mal vector m. Results of several numerical tests are given in Section 2.3.

2.1. Expressions for the cut volume, cut area and its center of mass

The intersection of the plane (3) with a cube is a polygon with a number of sides varying from three to six,
as schematically represented in Fig. 1. In our notation the vector m normal to the interface is pointing outside
the region where the reference phase is located, towards the secondary phase where C = 0. In the case of Fig. 2
the three coefficients mi are positive and the cut volume V ¼ h3C is the volume under the quadrilateral ABCD
of area A. The following expression for the cut volume V ¼ V ðm; a; hÞ was derived in [15]
V ¼ h3C ¼ 1

6m1m2m3

a3 �
X3

i¼1

F 3ða� mihÞ þ
X3

i¼1

F 3ða� amax þ mihÞ
" #

; ð4Þ
with mi P 0, amax ¼ h
P3

i¼1mi and F nðzÞ ¼ zn when z > 0 and zero otherwise. A geometrical interpretation of
expression (4) for the case depicted in Fig. 2 is that the volume V is computed first by considering the volume
of the right tetrahedron under the triangle AEH of area A0, then by subtracting the volume under the two
triangles CEG and BFH, respectively of area A1 and A2 and finally by adding back the volume of the tetra-
hedron under the triangle DFG of area A4, which was subtracted twice in the previous operations. Further-
more, we notice that all the tetrahedra and triangles involved in this computation are similar. The relation (4),
given the normal vector m and the side h, is a one-to-one function connecting C and a, which implies that the
inverse relation a ¼ aðm;C; hÞ is uniquely defined. Analytical relations for the direct and inverse functions can
be found in [16].

It is also possible to derive an expression for the area A of the cut polygon. The procedure is exactly the
same, but instead of adding and removing the volume of similar right tetrahedra we now operate with the area
of similar triangles. With the previous definitions and with reference to Fig. 2 we have A ¼ A0 � A1 � A2 þ A4,
while the more general expression for the area of the cut polygon is
A ¼ M123 a2 �
X3

i¼1

F 2ða� mihÞ þ
X3

i¼1

F 2ða� amax þ mihÞ
" #

; ð5Þ
where
3 intersections 4 intersections

6 intersections5 intersections

Fig. 1. The polygon cut by a plane and a right hexahedron: the number of its sides varies from 3 to 6.
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Fig. 2. The cut volume is the shaded volume inside the grid cell under the polygon ABCD.
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M123 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ m2
2 þ m2

3

p
2m1m2m3

:

Finally, we can easily compute the local coordinates of the center of mass xg of the area A. For the geometry in
Fig. 2 we have Axg ¼ A0x0 � A1x1 � A2x2 þ A4x4, which is a particular case of
Axg ¼ M123 a2x0 �
X3

i¼1

ðF 2ða� mihÞxi � F 2ða� amax þ mihÞx3þiÞ
" #

; ð6Þ
where the position of the center of mass xi of the triangle Ai is easily determined. Alternatively, one can deter-
mine the intersections of the plane with the sides of the central cell, order consecutively this set of points, a
variable number between three and six, subdivide the area A in simpler geometrical figures whose center of
mass can be easily computed, and then find xg. We have considered such an algorithm and while it may have
advantages for unstructured grids it is about three times slower than the geometrical approach (6).

2.2. Evaluation of the interface normal

We now describe two three-dimensional algorithms of increasing complexity and accuracy to compute the
normal vector. The first one is based on some heuristic criteria discussed in the next section, while the second
one minimizes a distance functional to compute the constants mi of the plane equation (3).

2.2.1. The height function and two geometrical criteria for the reconstruction of linear interfaces

Consider, as in Fig. 3, a linear interface in the 3� 3 block of square cells of side h. The volume fraction
values can be added columnwise to define a local height function y ¼ f ðxÞ or rowwise for the width function
x ¼ gðyÞ. For example, the height yi�1 at the abscissa xi�1, placed in the center of the column, is given by the
expression hyi�1 ¼ h2P1

k¼�1Ci�1;jþk. In the case of Fig. 3a we write the equation of the straight line as
sgnðmyÞy ¼ mxxþ a0, where my ¼ �oC=oy. The sign of my is needed because we lose track of what phase is
on the top or on the bottom when we integrate the C data to get the height function; we compute the sign
with centered finite differences. The angular coefficient mx can be approximated with backward, centered
and forward finite differences, mxb ¼ ðyi � yi�1Þ=h, mxc ¼ ðyiþ1 � yi�1Þ=2h and mxf ¼ ðyiþ1 � yiÞ=h, respectively.
The coefficient mxb is equal to mx, since the two local heights yi and yi�1 are on the interface. This happens
when the straight line cuts two opposite sides of the column. In the case of the centered and forward estimates,
the line intersects two adjacent sides of the column ðjþ 1Þ and the height yiþ1 is not on the interface. A small
area outside the block of cells is missing and the last two schemes underestimate the value of mx. Therefore, if
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Fig. 3. Volume fractions are added columnwise, heights yi�1, yi and yiþ1 of case (a), or rowwise, widths xj�1, xj, xjþ1 of case (b), to compute
the slope of a linear interface. A central scheme, involving yi�1 and yi+1, gives the best linear approximation to the curved interface of
case (c).
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two estimates, say mx1 and mx2, are available for the same angular coefficient mx, we select one of them with
the following criterion based on the reconstruction of a linear interface
jm�j ¼ maxðjmx1j; jmx2jÞ; ð7Þ

where the absolute value is required since the angular coefficients may also be negative. We can also use
the width function by considering the line equation sgnðmxÞx ¼ myy þ a00. For the almost vertical line of
Fig. 3b any finite difference scheme calculates the correct value my, as the line cuts two opposite sides of
each row. On the other hand if we use the height function y ¼ f ðxÞ, any discrete estimate of mx satisfies
jmxj 6 3, a rather crude approximation for a value that should go to infinity as the line becomes vertical.
Therefore, between any two approximations mx1 and my1 for the angular coefficients mx and my, we now
choose
jm�j ¼ minðjmx1j; jmy1jÞ: ð8Þ

In this way we use the form y ¼ f ðxÞ if the interface line is almost horizontal and x ¼ f ðyÞ if the interface is
about vertical. The above criteria optimize the reconstruction of a linear interface, but they may not select the
best guess in the case of a curved interface. In Fig. 3c the interface line y ¼ f ðxÞ has a vertical axis of symmetry
in the middle of the central column, where f 0ðxÞ ¼ 0. For this case the best approximation is myc, since myc ¼ 0,
but this would require the minimum value in Eq. (7). However, numerical tests show that on average the two
relations (7) and (8) are the best ones.

A different approach, to select an angular coefficient among a set of candidates mi, is considered in the
ELVIRA algorithm by computing backward, forward and central finite differences for both mx and my,
for a total of six candidates. For each mi the intercept a is computed and the straight line is extended to
the 3� 3 block of cells of Fig. 3, defining in this way a tentative volume fraction eC in the neighboring
cells. The selected coefficient mi minimizes the sum of the errors between the actual C and the tentativeeC data [13]. In the extension to the three-dimensional space a 5� 5� 5 block of cells is considered with
a total of 72–144 candidate normal vectors and associated a. The minimization involves a local height
function, defined over columns of 5 cells along one of the three coordinate directions, and not directly
the C data [14]. The two-dimensional and three-dimensional algorithms reconstruct any linear interface
exactly.

In this paper we extend the two criteria (7) and (8) to the three-dimensional space in order to select a plane
among a small number of candidates in a simple and efficient way. The selected plane provides the preliminary
reconstruction for the least-squares fit procedure discussed in 2.2.3. We first define the local height function
z ¼ f ðx; yÞ by summing the C data along the vertical direction, h2zi;j ¼ h3P1

l¼�1Ci;j;kþl. This height will be cor-
rectly located on the linear interface only if the plane cuts the four vertical sides of the square column. This is
not the case for the plane xþ y þ z ¼ a in Fig. 4. An extra layer of cells must be considered on the top and the
bottom of the block. It is straightforward to show that for any 0 6 a 6 3, corresponding to 0 6 Cijk 6 1, the
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plane now cuts two consecutive columns in the x and y directions so that an exact evaluation of mx and my is
possible with finite differences. When the three coefficients mi are not equal, the 5 cells are taken along the
maximum component of the numerically computed volume fraction gradient $C. However, a stencil with
45 cells is still quite large and we consider only blocks of 3� 3� 3 cells. With the local height z we then write
the plane equation as sgnðmzÞz ¼ mxxþ myy þ a. Furthermore, the triplet ðsgnðmzÞ;mx;myÞ is normalized to
ðm0

z ;m
0
x;m

0
yÞ, with the sum of the absolute value of the three components equal to 1. Because of this constraint,

if we have two competing planes written as z ¼ f ðx; yÞ, instead of taking the maximum of the sum jm0xj þ jm0y j
as required by relation (7), we consider
jm�j ¼ minðjm0
z1j; jm0

z2jÞ: ð9Þ
Similarly, if we have two different planes, written as z ¼ f ðx; yÞ and y ¼ gðx; zÞ respectively, we select one of the
two according to relation (8), now restated as
jm�j ¼ maxðjm0
z1j; jm0

y1jÞ: ð10Þ
The two criteria (9) and (10) do not involve the line constant a which is computed only once when the selection
process has been completed.

2.2.2. Mixed Youngs-centered (MYC) method

We apply these criteria to a set of four normal vectors computed with Youngs’ method, for its good behav-
ior at low resolution, and with the Centered Columns scheme, better at higher resolution, and call the scheme
the Mixed Youngs-centered method.

2.2.2.1. Youngs’ method. The interface normal is evaluated as the gradient of the C function, m ¼ �rhC, with
finite differences. The normal is first estimated at the eight corners of the central cell ði; j; kÞ, as shown in Fig. 5.
In particular, the normal components ðmx;my ;mzÞ in the vertex of coordinates ðxiþ1=2; yjþ1=2; zkþ1=2Þ are
mx ¼
1

h
ðCi � Ciþ1Þ; my ¼

1

h
ðCj � Cjþ1Þ; mz ¼

1

h
ðCk � Ckþ1Þ;
where, for example, Ci ¼ ðCi;j;k þ Ci;jþ1;k þ Ci;j;kþ1 þ Ci;jþ1;kþ1Þ=4. A similar finite difference scheme is applied in
the other seven vertices. The cell-centered normal vector is finally obtained by averaging the eight cell-corner
values.
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2.2.2.2. Centered columns (CC) method. We approximate the function z ¼ f ðx; yÞ in the central cell of the
block with the linear equation sgnðmzÞz ¼ mxxþ myy þ a. The sign of the coefficient mz ¼ �oC=oz is computed
with finite differences by using the C data in the top and bottom layers of Fig. 5. For the other two compo-
nents of the normal vector we consider a centered scheme based on the height function z
mx ¼
ziþ1;j � zi�1;j

2h
¼ 1

2

X1

l¼�1

Ciþ1;j;kþl �
X1

l¼�1

Ci�1;j;kþl

 !
;

and
my ¼
zi;jþ1 � zi;j�1

2h
¼ 1

2

X1

l¼�1

Ci;jþ1;kþl �
X1

l¼�1

Ci;j�1;kþl

 !
:

We also consider the height function along the x and y directions, define the two linear functions x ¼ hðy; zÞ
and y ¼ gðx; zÞ and calculate the corresponding normal vectors.

We have now a set of four different planes. First we select one candidate among the three computed with
the CC scheme by using (10), then with (9) we select between this chosen candidate and the plane obtained
with Youngs’ method.

2.2.3. Least-squares fit (LSF) method
In this method we extend to the three-dimensional space a two-dimensional technique described in [17]. The

procedure is divided in three steps: (1) choice of a convenient set of points inside the 3� 3� 3 block of cells;
(2) construction of a weight function and weight assignment to each point in the set; (3) minimization of a
suitable distance functional in order to find the plane coefficients. To define the set of points we consider
the interface reconstructed with the MYC method and select one point in each cell crossed by the interface.
This point is the center of mass xg of the area of the polygon cut by the reconstructed plane and the grid cell.
We then consider a Gaussian function to weight the point contribution to the distance functional. In partic-
ular, we denote with xc ¼ ðxc; yc; zcÞ the position of the center of mass of the central cell and define
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di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxgi � xcÞ2 þ ðygi � ycÞ

2 þ ðzgi � zcÞ2
q

;

dm ¼
Xnp

i¼1

di=np;

r2 ¼
Xnp

i¼1

ðdi � dmÞ2=ðnpðnp � 1ÞÞ;
where np 6 27 is the total number of points, di is the distance of each point from xc, dm the average distance
and r2 the variance. The weights xi are first defined as xi ¼ expð�d2

i =ðar2ÞÞ, where a is a free parameter (here
a ¼ 0:75), and then their sum is normalized to one, xT ¼

Pnp

i¼1xi and xi ¼ xi=xT . From the preliminary
reconstruction based on the two relations (9) and (10), we know if the plane equation is written as
z ¼ f ðx; yÞ, rather than x ¼ hðy; zÞ or y ¼ gðx; zÞ. In the first case we store the sign of mz and move the origin
of the local coordinate system to the center of mass of the np points with coordinates ðX g; Y g; ZgÞ, where, for
example, X g ¼

Pnp

i¼1ðxixgiÞ. The functional H for this case is defined by
H ¼
Xnp

i¼1

xiðZgi � ðmxX gi þ myY giÞÞ2
� �

; ð11Þ
and is minimized by taking oH=omx ¼ oH=omy ¼ 0. The solution of this simple linear system provides the val-
ues of mx and my and then we complete the interface reconstruction in the central cell by computing the inter-
cept a [16].

2.3. Reconstruction tests

We now examine the accuracy and convergence properties of the methods previously described for well-
behaved interfaces. The choice of the surfaces is motivated by their local mean curvature, which is zero for
a plane, constant for a sphere and variable, in both magnitude and sign, for a sinusoidal surface.

2.3.1. Error measure, convergence rate and numerical integration

Let vðxÞ be the characteristic function associated to a fluid body and evhðxÞ be its approximation obtained
with a VOF reconstruction method in a grid with cubic cells of side h. A natural measure of the difference
between the exact interface and the reconstructed one is the geometrical error Eh in L1
Eh ¼
Z Z Z

jvðxÞ � evhðxÞjdxdy dz: ð12Þ
The order of convergence O of a reconstruction method, by considering the errors Eh obtained with grid spac-
ing h and Eh/2 with h/2, can be numerically calculated as
O ¼ lnðEh=Eh=2Þ
lnðh=ðh=2ÞÞ ¼

lnðEh=Eh=2Þ
lnð2Þ : ð13Þ
In general, this expression is a function of the fluid body shape, its position and orientation with respect to the
grid lines and of the grid spacing h. The error Eh should decrease with h, however at very low resolution by
halving h it decreases much more than at very high resolution. Therefore, the expression (13) is usually a
decreasing function of the resolution h converging towards the asymptotic order of convergence in the limit
as h! 0. We initialize the volume fraction C and calculate the error Eh numerically, in a unit cube partitioned
in n3 cells. As an example, suppose that around the cell ði; j; kÞ we can write the surface equation as
f ðx; yÞ � z ¼ 0, then the value of C in the cell ði; j; kÞ is defined by
h3C ¼
Z ih

ði�1Þh

Z jh

ðj�1Þh

Z kh

ðk�1Þh
vðxÞdxdy dz ¼

Z ih

ði�1Þh

Z jh

ðj�1Þh
z� dy dx; ð14Þ
where z� ¼ minðh;maxðf ðx; yÞ � ðk � 1Þh; 0ÞÞ is in the range ½0; h�. We subdivide the base of the cell in l2

squares, compute the z* values in the four corners of each square and calculate (14) numerically with a
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two-dimensional Simpson’s rule. For reliable results, the error Eh defined in (12) should be several orders of
magnitude bigger than the error between the exact value of the C function and the numerical data (14). On the
other hand, the CPU time increases linearly with the number l2 of squares, and we have found a good com-
promise for l = 30. Furthermore, for each geometry we consider 100 different cases with randomly generated
coefficients in order to stabilize the error Eh. This is necessary because the error could be particularly small due
to favorable alignments between the interface and the grid lines. Finally, we consider five different partitions of
the unit cube in n3 cells, with n in the set ð10; 20; 40; 80; 160Þ.

2.3.2. Reconstruction of a plane

We consider the plane equation mxxþ myy þ mzz ¼ a, where the four coefficients ðmx;my ;mz; aÞ are ran-
domly generated. We see in Table 1 that Youngs’ scheme has the worst performance, the CC and MYC meth-
ods are intermediate, while the error of LSF is at least two orders of magnitude smaller that the other ones. As
expected from the discussion in Section 2.2.1 none of the proposed reconstruction methods can reproduce
exactly all linear interfaces. However, notice that the two criteria (9) and (10) select efficiently between
Youngs’ and the CC schemes. Moreover, the LSF method can be used as a starting guess for another LSF
procedure. We observe that the errors decrease by at least 5 orders of magnitude with the first iteration
and after the second one are below machine accuracy. The use of a weight function in the distance functional
accelerates the convergence towards the exact linear interface. A second-order method is expected to recon-
struct all linear interfaces exactly, but this would require at least one further application of the LSF method.
However, the next tests demonstrate that with a curved interface we only need the very first LSF reconstruc-
tion and still the algorithm performs as a second-order accurate method even at high grid resolutions. There-
fore, in all the following tests we reconstruct the interface only once with the least-squares fit.

2.3.3. Reconstruction of a sphere

We consider the sphere equation ðx� xcÞ2 þ ðy � ycÞ
2 þ ðz� zcÞ2 ¼ R2, where R ¼ 0:325 and the center

coordinates ðxc; yc; zcÞ are randomly generated near the point ð0:5; 0:5; 0:5Þ in order to keep the whole sphere
inside the unit cube. The results are shown in Table 2 and are consistent with the results obtained in two
dimensions with a circle. Youngs’ scheme is competitive only at a very low resolution, the MYC algorithm
performs better than Youngs’ and the CC methods in all but one case, while the LSF scheme provides the best
results. More particularly, the convergence rates of Fig. 6 show that Youngs’ scheme is quickly degrading to
first-order, while the CC and MYC methods are not yet close to an asymptotic regime. Nevertheless, since the
resolution n = 160 is very high, the convergence rate of these two methods can be considered between 1 and 2
in most applications. The LSF method performs as a second-order algorithm and in Fig. 7 the reconstructed
spherical interface is rather good even at the lowest resolution with n = 10. Thus on average, in three dimen-
sions we need a local radius of curvature at least three to four times bigger than the grid spacing for an accu-
Table 1
Reconstruction errors for a plane with different meshes with n3 cells and reconstruction algorithms

n = 10 n = 20 n = 40 n = 80 n = 160

Youngs 5.743e�4 2.863e�4 1.431e�4 7.159e�5 3.580e�5
CC 1.578e�4 7.867e�5 3.939e�5 1.970e�5 9.848e�6
MYC 7.981e�5 4.023e�5 2.011e�5 1.005e�5 5.030e�6
LSF 2.555e�7 1.158e�7 5.490e�8 2.673e�8 1.318e�8

Table 2
Reconstruction errors for a sphere with different meshes with n3 cells and reconstruction algorithms

n = 10 n = 20 n = 40 n = 80 n = 160

Youngs 1.883e�3 5.300e�4 1.948e�4 8.635e�5 4.132e�5
CC 2.430e�3 5.379e�4 1.390e�4 3.895e�5 1.223e�5
MYC 2.151e�3 5.148e�4 1.285e�4 3.381e�5 9.658e�6
LSF 1.921e�3 4.767e�4 1.191e�4 2.980e�5 7.463e�6
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Fig. 6. The convergence rates for the reconstruction of a sphere obtained with several reconstruction algorithms.

Fig. 7. The reconstruction of a sphere in a grid with n3 cells, n = 10 (left) and n = 20 (right), with the LSF method.

2310 E. Aulisa et al. / Journal of Computational Physics 225 (2007) 2301–2319
rate interface reconstruction. The thickness of a filament should be similar, to avoid the presence in the same
stencil of interface regions with opposite normal vectors.

2.3.4. Reconstruction of a sinusoidal surface

Here we consider the sinusoidal function z ¼ 0:5þ sinðpaxÞ sinðpbyÞ, where the two parameters a; b are in
the range ½0; 1� and are randomly generated. In Fig. 8 the convergence rates are similar to those of the previous
test, while the computed reconstruction errors are about two to three times bigger. The interface has a more
complex structure and the absolute value of the radius of curvature is locally smaller than in the sphere test. In
Fig. 9 at the lowest resolution n = 10 the sinusoidal surface is not well reproduced even by the LSF reconstruc-
tion, but at n = 20 the interface is much better resolved. As previously stated, when the local radius of curva-
ture is comparable with the grid spacing h the surface is poorly approximated by a plane and the interface
discontinuity at the cell boundary is of order h [17].

3. Interface advection

We consider again the advection Eq. (1) for the characteristic function v recast in conservative form for an
incompressible flow
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Fig. 8. The convergence rates for the reconstruction of a sinusoidal surface obtained with several reconstruction algorithms.

Fig. 9. The reconstruction of a sinusoidal surface in a grid with n3 cells, n = 10 (left) and n = 20 (right), with the LSF method.
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ov
ot
þr � ðvvÞ ¼ vr � v ¼ 0: ð15Þ
We integrate it over the cell volume V0 to find the evolution equation for the volume fraction C [4]
h3 oC
ot
þ
Z

C
vv � n dC ¼

Z
V 0

vðr � vÞdV ¼ 0; ð16Þ
where C is the boundary of the grid cell and n its outgoing normal. The surface integral represents the net ref-
erence phase flux through C. In the reconstruction step we approximate the interface with a portion of a plane,
defining in this way a function ev that satisfies
h3C ¼
Z

V 0

vdV ¼
Z

V 0

ev dV :
We then advect the interface in a given velocity field by computing in (16) the boundary fluxes of ev, to update
the C data at the next discrete time. Either multidimensional (unsplit) schemes or a sequence of one-dimen-
sional (operator split) schemes have been considered. In the first category the fluid flowing in the time step
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Fig. 10. VOF/PLIC reconstruction in three consecutive cells and geometrical interpretation of the Eulerian-implicit (EI) scheme. The
rectangle A0B0C0D0, that includes the central cell and the fluxing areas of the two adjacent cells, is mapped into ABCD.
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Dt through a cell face comes from different neighbouring cells and the fluxing volume is a rather complex geo-
metrical figure. A Cartesian geometry is usually considered in the second category. All the points on a plane
perpendicular to the direction of propagation move with the same velocity and the fluxing volume is a right
hexahedron. The reference phase flux is then given by the portion of this hexahedron cut by the reconstructed
interface and can be computed with analytical expressions [16]. A two-dimensional example is shown in
Fig. 10, where the fluid volume flowing into the central cell from the left side is the rectangle A0ADD0 and
the reference phase flux is represented by the shaded portion of this area. Once the one-dimensional cell
boundary fluxes are computed, the volume fraction is updated independently along each coordinate direction.
In the next subsections we first review in Section 3.1 a few advection schemes in one and two dimensions,
then in Section 3.2 we present a new three-dimensional algorithm, while the numerical tests are discussed
in Section 3.3.

3.1. Advection schemes in one and two dimensions

Let us consider first the monodimensional version of (16) along the x coordinate with a cell-averaged
approximation of the term ou=ox. This term represents a compression or expansion along x that may differ
from zero even if the multidimensional flow is incompressible [7]. We discretize this equation on a staggered
MAC grid [18], with cells of side h and use a simple forward scheme in time with Dt ¼ tnþ1 � tn
Cnþ1
ijk ¼ Cn

ijk þ F left � F right þ eCijkðuright � uleftÞ; ð17Þ
where u is from now on the CFL number ðuDt=h! uÞ and Fleft and Fright denote the volume fraction fluxes
across the left and right faces of the cell ði; j; kÞ. We consider two monodimensional schemes, corresponding to

a different value of eCijk. A simple geometrical interpretation shows that both schemes satisfy the consistency
property: 0 6 Cnþ1

ijk 6 1.

3.1.1. Eulerian-implicit (EI) scheme

We set eCijk ¼ Cnþ1
ijk , the scheme is implicit and (17) becomes
Cnþ1
ijk ¼

Cn
ijk þ F left � F right

1� ðuright � uleftÞ
: ð18Þ
A two-dimensional geometrical interpretation of this equation is shown in Fig. 10, where the grid cell is the
square ABCD. The two ‘‘Eulerian’’ fluxes F are computed from the volume fractions at time n and are defined
by the gray areas inside the rectangles A0ADD0 and B0BCC0.

3.1.2. Lagrangian-explicit (LE) scheme

We now set eCijk ¼ Cn
ijk in Eq. (17) and the scheme is explicit
Cnþ1
ijk ¼ Cn

ijkð1þ ðuright � uleftÞÞ þ F left � F right: ð19Þ
The fluxes are now the grey areas inside the rectangles A00ADD00 and B00BCC00 of Fig. 11: the reconstructed inter-
face is first advected and then the fluxes are computed. The Lagrangian advection by a one dimensional flow
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Fig. 11. VOF/PLIC reconstruction in a cell (a) and geometrical interpretation of the Lagrangian-Explicit (LE) scheme (b). The cell ABCD

is mapped into the rectangle A00B00C00D00, that includes both the central cell and the fluxed areas into the two adjacent cells.
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of a VOF/PLIC reconstruction changes its orientation, as shown in the figure, moreover the areas computed in
the LE method are expanded or compressed by the divergence term, hence the EI and LE fluxes are different
[17].

3.1.3. The combined EI–LE scheme

We can combine these two schemes into a two-dimensional advection technique which can be either split or
unsplit. If the flow is incompressible, the discrete version of r � v ¼ 0 is written as ðuright � uleftÞþ
ðvup � vdownÞ ¼ 0. With reference to Fig. 12, the computational domain is meshed with square cells, such as
ABCD, and the advection scheme corresponds to a mapping from a tessellation of the plane, with rectangles
A0B0C0D0, into another tessellation of the domain with rectangles A00B00C00D00. The mapping is given by the fol-
lowing piecewise linear affine transformation
Fig. 12
two re
Pxy ¼
x0 ¼ aðxþ uleftÞ
y 0 ¼ by þ vdown;

�
ð20Þ
where a ¼ 1=ð1� uright þ uleftÞ and b ¼ 1þ vup � vdown. The implicit step is in the x direction and maps A0B0C0D0

into ABCD; it is followed by the Lagrangian step in the y direction mapping ABCD into A00B00C00D00. The meth-
od is split if an intermediate reconstruction is performed after the first step. The Jacobian J of the linear trans-
formation Pxy is J ¼ ab. It is equal to one if the flow is incompressible, then the scheme conserves the area
exactly [6]. Finally, the direction of the first implicit advection should be alternated in time in order to avoid
a preferential direction of propagation [19].

3.2. Three-dimensional split advection schemes

In this section we consider a series of consecutive advection steps to advance the interface in three dimen-
sions. We recall that a split VOF/PLIC technique requires an interface reconstruction before each advection
A

D’’ C’’

B’

C’

A’

A’’ B’’

D’

B

C D

. In the EI–LE scheme the rectangle A0B0C0D0 of a tessellation of the plane is mapped into A00B00C00D00 of a different tessellation. The
ctangles have the same area, therefore the scheme is area-preserving.
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step, therefore the change in the total error of the method at each time step comes from both the reconstruc-
tions and the advection steps. The sequence of one-dimensional propagations along the coordinate directions
should be changed at each time step to remove possible asymmetries.

3.2.1. Three-dimensional split LE scheme

We advance the interface with a sequence of consecutive monodimensional LE advections, each of them
described by (19). We have shown that in two dimensions, when the vorticity field is not constant, this method
does not conserve the mass [17]. In three dimensions this method was implemented in the SURFER code [15]
and it is here considered only for comparison reasons.

3.2.2. Three-dimensional advection with three EI–LE steps

Let the three-dimensional velocity field v ¼ ðu; v;wÞ be incompressible, then we define three new fields
v1 ¼ ðu1; v1; 0Þ, v2 ¼ ðu2; 0;w2Þ, v3 ¼ ð0; v3;w3Þ and require each field to be incompressible, r � vi ¼ 0, and their
sum to be equal to the given field,

P3
i¼1vi ¼ v. We have six scalar equations for the the six unknowns

ðu1; v1; u2;w2; v3;w3Þ, but only five of them are independent. For example, if v1; v2 satisfy r � v1 ¼ r � v2 ¼ 0,
we can compute v3 ¼ v� v1 � v2, but then r � v3 ¼ r � ðv� v1 � v2Þ ¼ 0 is automatically satisfied. We can
use this degree of freedom and let u1 ¼ u=2, then u2 ¼ u� u1 ¼ u=2. From the boundary, where we set
v1:i;j�1=2;k ¼ vi;j�1=2;k=2, we use the discrete form of r � v1 ¼ 0 on a staggered MAC grid
v1:i;jþ1=2;k � v1:i;j�1=2;k þ u1:iþ1=2;j;k � u1:i�1=2;j;k ¼ 0; ð21Þ
and solve it for v1:i;jþ1=2;k. As we move away from the boundary there is only one unknown in the previous
equation and the field component v1 is readily available. Then we compute v3 ¼ v� v1. In a similar way we
calculate w3, from r � v3 ¼ 0, and w2 ¼ w� w3. The method is not symmetrical as it stands since it singles
out direction 1. To reduce asymmetries, we first let u1 ¼ u=2 and calculate ðu2; v1; v3;w2;w3Þ as previously de-
scribed, then repeat the same procedure twice, first by letting v3 ¼ v=2 and then w2 ¼ w=2. The velocity field is
then given by one third of the sum of these three sets of incompressible fields and it is called EILE-3D. To
illustrate its features we also consider the following simplified decomposition (EILE-3DS)
u1 ¼ u2 ¼ u=2; v1 ¼ v3 ¼ v=2; w2 ¼ w3 ¼ w=2;
where each velocity field vi is not divergence free.

3.3. Advection tests

In this section we analyze the performance of the reconstruction and advection schemes over standard three-
dimensional tests. First we consider simple flows such as uniform translations and rotations where a smooth
fluid body should be advected without significant distortion and the mass should be conserved exactly. We then
study the performance of the proposed algorithms in three-dimensional flows with not uniform vorticity.

3.3.1. Geometrical and mass errors

To quantify the results we consider two widely used discrete error norms in L1. The first one is the relative
mass error Emðt1Þ between the total volume occupied by the reference phase at the initial time t0 and that of the
fluid body at time t1
Emðt1Þ ¼
j
P

ijkCijkðt0Þ �
P

ijkCijkðt1ÞjP
ijkCijkðt0Þ

: ð22Þ
The second one is the geometrical error between the position of the reference phase at the two instants ðt0; t1Þ
Egðt1Þ ¼
P

ijkjCijkðt0Þ � Cijkðt1ÞjP
ijkCijkðt0Þ

: ð23Þ
In both equations the cell volume h3 has been simplified. The error Eg is meaningful only when the fluid body
at time t1 should be back to its initial configuration.
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3.3.2. Translation and solid body rotation

The velocity field is not only incompressible, but also ou=ox ¼ ov=oy ¼ ow=oz ¼ 0. Therefore, the monodi-
mensional compression or expansion term in (17) vanishes and this leads to the same geometrical and mass
errors for all methods. For both tests we consider a sphere of radius R ¼ 0:15 and center in the unit box par-
titioned with n3 cells of side h ¼ 1=n and resolution n ¼ 16; 32; 64; 128. In the translation test the sphere center
is at ð0:5; 0:5; 0:5Þ and the constant velocity field is ðh=2Dt; h=2Dt; h=2DtÞ at t ¼ t0. The sphere moves along the
main diagonal and it is back to its position after 2n steps when we change the sign of the velocity for other 2n

steps. Periodic boundary conditions are applied on the box boundary. In Fig. 13 we show the fluid body
motion after 0, ð2nþ 1Þ=3; ð4n� 1Þ=3 and 2n steps, with resolution n = 64. The relative mass error is zero
and the geometrical error varies only with the reconstruction method. The results obtained with the MYC
and LSF reconstructions are given in Table 3. The least-squares fit performs on average better, but its conver-
gence rate is about 1.6. This is a somewhat expected result, since there are three interface reconstructions and
monodimensional advections at each time step.

In the rotation test the sphere, with center at ð0:7; 0:5; 0:5Þ, performs a rotation in 3n steps, then we change
the sign of the angular velocity and the sphere goes back to the initial position in the same number of steps.
The rotation axis is along the line x ¼ 0:5; y þ z ¼ 2. The results are given in Table 4. At high resolution, the
performance of the MYC scheme is close to that of the least-squares fit in terms of errors and convergence
rate. A similar behavior is found in the next test, with the performance of the LSF method always a bit better,
therefore results will be given only for this method.
Fig. 13. Translation of a sphere along the main diagonal. Initial configuration and after ð2nþ 1Þ=3; ð4n� 1Þ=3; 2n steps, with n = 64 (left
to right, top to bottom).

Table 3
Geometrical error Eg for the translation of a sphere with different meshes with n3 cells and reconstruction algorithms

n = 16 n = 32 n = 64 n = 128

Eg (MYC) 3.852e�2 4.436e�2 1.388e�2 2.862e�3
Eg (LSF) 4.401e�2 1.216e�2 5.247e�3 1.734e�3



Table 4
Geometrical error Eg for the rotation of a sphere with different meshes with n3 cells and reconstruction algorithms

n = 16 n = 32 n = 64 n = 128

Eg (MYC) 8.538e�2 1.291e�2 3.796e�3 1.889e�3
Eg (LSF) 8.937e�2 1.092e�2 3.731e�3 1.785e�3
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3.3.3. Single vortex test with not uniform vorticity

The velocity field vðx; y; z; tÞ in the unit cube is defined by
Table
Geom

Eg (LE
Eg (EI
Eg (EI

Table
Mass e

Em (LE
Em (EI
uðx; y; z; tÞ ¼ sin2ðpxÞ cosðptn=2nÞ½sinðpðy � 0:5ÞÞ � sinðpðz� 0:5ÞÞ�;
vðx; y; z; tÞ ¼ sin2ðpyÞ cosðptn=2nÞ½sinðpðz� 0:5ÞÞ � sinðpðx� 0:5ÞÞ�;
wðx; y; z; tÞ ¼ sin2ðpzÞ cosðptn=2nÞ½sinðpðx� 0:5ÞÞ � sinðpðy � 0:5ÞÞ�;
where tn is the discrete time, 1 6 tn 6 2n. A sphere of radius R ¼ 0:15 and center xc ¼ ð0:7; 0:5; 0:5Þ is im-
mersed in this flow and stretched around the center of the unit box. It reaches its maximum deformation at
tn ¼ n and then returns to its initial position [20]. To study the convergence in space we consider the four grid
resolutions of the previous tests, n ¼ 16; 32; 64; 128, and present the results obtained with the LSF reconstruc-
tion and the split advection algorithms previously described. The geometrical and mass errors given in Tables
5 and 6, where the maximum CFL number is 1. The convergence rate for the EILE-3DS advection remains
greater than 2 and it is about one for the EILE-3D scheme, which however conserves mass to machine accu-
racy. The sequence of three LE steps has the greatest geometrical and mass errors, with a convergence rate of
about 1 in this range of grid resolutions and it will not be considered any longer.

In Fig. 14 we show the initial fluid body configuration and after n=2; n; 2n steps, with n = 64 and the EILE-
3DS advection. The geometrical error is about 1% and can hardly be seen at this resolution. The local radius
of curvature and thickness of the deformed fluid body are at least a few cell size h and the interface is well
resolved in the whole simulation. This is not the case at lower n, where the discontinuity in the reconstructed
interface at the cell boundary becomes of order h. The interface is more and more poorly resolved as the sim-
ulation goes on, eventually inducing a numerical breakup. However, this is a major issue for every VOF
method that limits the interface reconstruction to a single linear equation in a cut cell.

To study the temporal behavior of the reconstruction and advection errors we consider a fixed grid reso-
lution and decrease progressively the time step or equivalently the monodimensional CFL number,
CFL ¼ uDt=h. The results with n = 32 for the geometrical and mass errors are reported in Table 7. If the grid
mesh is fixed then the geometrical error is converging towards an asymptotic limiting value as the CFL num-
ber decreases towards zero [8,9]. This constant limit is critical for the feasibility of the VOF technique since, in
applied dynamical simulations, stability requirements limit the CFL number to rather small values. However,
5
etrical error Eg for the single vortex test of a sphere with different meshes with n3 cells and split advection algorithms

n = 16 n = 32 n = 64 n = 128

) 4.213e�1 1.703e�1 8.005e�2 4.115e�2
LE-3D) 8.855e�2 4.351e�2 2.150e�2 1.085e�2
LE-3DS) 1.835e�1 4.379e�2 9.532e�3 2.010e�3

6
rror Em for the single vortex test of a sphere with different meshes with n3 cells and split advection algorithms

n = 16 n = 32 n = 64 n = 128

) 3.464e�1 1.664e�1 7.252e�2 3.505e�2
LE-3DS) 8.174e�4 1.065e�4 9.084e�6 1.444e�6



Fig. 14. Advection of a sphere in a deforming velocity field. Initial configuration and after n=2; n; 2n steps, with n = 64 (left to right, top to
bottom).

Table 7
Geometrical (Eg) and mass (Em) errors for the single vortex test of a sphere on a 323 mesh with different CFL numbers and split advection
algorithms

CFL = 1.0 CFL = 0.1 CFL = 0.01 CFL = 0.001

Eg (EILE-3D) 4.351e�2 1.491e�2 1.555e�2 1.564e�2
Eg (EILE-3DS) 4.378e�2 5.024e�2 5.119e�2 5.127e�2
Em (EILE-3DS) 1.065e�4 1.323e�6 1.433e�8 2.247e�9
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the EILE-3D advection is the only scheme where the geometric error is consistently decreasing towards the
asymptotic value, as shown in Table 8. We note that at n = 128 and CFL ¼ 0:01 the geometrical error is
not yet in the asymptotic regime, but the convergence rate is at least second-order accurate.

Finally, we discuss a few features of the EILE-3D and EILE-3DS schemes. They both require six recon-
structions and monodimensional interface advections, but they are based on two different decompositions
of the incompressible three-dimensional velocity field v. Each velocity field vi of the EILE-3DS decomposition
satisfies the boundary conditions on the boundary C of the unit cube, i.e. vijC ¼ 0, but it is not divergence free,
Table 8
Geometrical error Eg for the single vortex test of a sphere mesh with the EILE-3D split advection, different meshes with n3 cells and CFL
numbers

CFL = 1.0 CFL = 0.1 CFL = 0.01

Eg (n = 64) 2.150e�2 3.658e�3 3.294e�3
Eg (n = 128) 1.085e�2 1.200e�3 6.235e�4
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vice versa for the EILE-3D decomposition only the sum of the vi satisfies the boundary conditions,P3
i¼1vijC ¼ 0, but each vi is divergence free. In the EILE-3D decomposition the three vi are different from zero

on the boundary where they generate a back and forth motion which is not physical in nature and is the cause
of an additional error. This motion is maximum on C, but it is also present throughout the computational
domain, as it is determined by the discrete divergence-free condition (21). Furthermore, we observe a sec-
ond-order convergence with grid refinement of each vi to the correct boundary value vjC ¼ 0. At high CFL
numbers this error is the predominant one and the convergence rate of the EILE-3D algorithm is only linear,
while the EILE-3DS scheme is second-order. As we decrease the CFL number by considering smaller time
steps, the total number of steps increases and the error due the fact that r � vi 6¼ 0 accumulates and becomes
the most important one for the EILE-3DS scheme. The results show that the performance of the EILE-3DS
scheme deteriorates and as for most VOF schemes the error converges to the asymptotic value from below.
For the EILE-3D algorithm the error decreases with the time step and converges to a much lower value from
above. This scheme has the best performance in the range of small CFL numbers used in most dynamical
simulations.

4. Conclusions

We have presented an interface reconstruction algorithm for two-phase flows in Cartesian three-dimen-
sional grids. Two simple geometrical criteria have been introduced to select a preliminary linear reconstruction
among a small number of candidates. Points on this reconstructed interface are then selected in order to min-
imize a distance functional and find the plane coefficients. The proposed method reconstructs linear interfaces
exactly when applied iteratively and over a curved interface performs as a second-order accurate method.
After reviewing the geometric nature of split advection, we have presented a new split algorithm which is based
on a decomposition of the three-dimensional incompressible velocity field in three planar vector fields. The
method conserves mass exactly and the error converges rapidly towards an asymptotic value as the CFL num-
ber decreases. For flows that stretch and deform considerably the interface, we observe a second-order con-
vergence rate with grid refinement in the asymptotic regime.
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391–396.
[12] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Ann. Rev. Fluid Mech. 31 (1999) 567–603.



E. Aulisa et al. / Journal of Computational Physics 225 (2007) 2301–2319 2319
[13] J.E. Pilliod Jr., E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys. 199
(2004) 465–502.

[14] G.H. Miller, P. Colella, A conservative three-dimensional Eulerian method for coupled solid-fluid shock capturing, J. Comput. Phys.
183 (2002) 26–82.

[15] D. Gueyffier, A. Nadim, J. Li, R. Scardovelli, S. Zaleski, Volume of fluid interface tracking with smoothed surface stress methods for
three-dimensional flows, J. Comput. Phys. 152 (1999) 423–456.

[16] R. Scardovelli, S. Zaleski, Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J. Comput.
Phys. 164 (2000) 228–237.

[17] R. Scardovelli, S. Zaleski, Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection, Int. J. Numer.
Meth. Fluids 41 (2003) 251–274.

[18] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids
8 (1965) 2182–2188.

[19] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506–517.
[20] R.J. Leveque, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal. 33 (1996) 627–

665.


	Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry
	Introduction
	Interface reconstruction algorithms
	Expressions for the cut volume, cut area and its center of mass
	Evaluation of the interface normal
	The height function and two geometrical criteria for the reconstruction of linear interfaces
	Mixed Youngs-centered (MYC) method
	Youngs '  method
	Centered columns (CC) method

	Least-squares fit (LSF) method

	Reconstruction tests
	Error measure, convergence rate and numerical integration
	Reconstruction of a plane
	Reconstruction of a sphere
	Reconstruction of a sinusoidal surface


	Interface advection
	Advection schemes in one and two dimensions
	Eulerian-implicit (EI) scheme
	Lagrangian-explicit (LE) scheme
	The combined EI-LE scheme

	Three-dimensional split advection schemes
	Three-dimensional split LE scheme
	Three-dimensional advection with three EI-LE steps

	Advection tests
	Geometrical and mass errors
	Translation and solid body rotation
	Single vortex test with not uniform vorticity


	Conclusions
	Acknowledgements
	References


